

#tutorial-HackSPLAT
16:00-17:30 EDT

Monday, July 13, 2020
Virtual ALIFE2020

https://livingcomputation.org/edu/alife2020/

Dave Ackley
Living Computation Foundation

Programming soft alife
with SPLAT and ulam

THANKS FOR COMING

Let’s get started

Note the URL

https://livingcomputation.org/edu/alife2020/

https://livingcomputation.org/edu/alife2020/

https://livingcomputation.org/edu/alife2020/

– code samples are available
there now, and slides and video
will be soon

OUTLINE
0) Organization: What are we doing here?
1) Best-effort computing: MFM & ulam
2) Space is the place: SPLAT
3) Biology and Beyond

OUTLINE
0) Organization: What are we doing here?
1) Best-effort computing: MFM & ulam
2) Space is the place: SPLAT
3) Biology and Beyond

BIG PICTURE MOTIVATIONS +
CONCRETE CODE EXAMPLES

OUTLINE
0) Organization: What are we doing here?
1) Best-effort computing: MFM & ulam
2) Space is the place: SPLAT
3) Biology and Beyond

PART 0: ORGANIZATION

WHO ARE YOU?
WHO AM I?
WHAT ARE WE DOING HERE?

No seriously, who ARE you?

You: Programmer of Deterministic Machines,

Restless (at an Alife conference! Or you found this
online in the future – what made you click?)

Me: Recovering Deterministic Machine Programmer,

restless

This: (1) A conceptual reboot with (2) Lots of little code

examples

PART 0: ORGANIZATION

WHO ARE YOU?
WHO AM I?
WHAT ARE WE DOING HERE?

CELLULAR AUTOMATA

WE’RE TALKING CELLULAR AUTOMATA OF A VERY

DIFFERENT KIND – ASYNCHRONOUS, NON
DETERMINISTIC, FAILURE-PRONE

PART 0: ORGANIZATION

WHO ARE YOU?
WHO AM I?
WHAT ARE WE DOING HERE?

CHAOTIC GOOD
CELLULAR AUTOMATA

PART 0: THE GOAL FOR SOCIETY

Develop and deploy
useful devices based on
indefinitely scalable, best-
effort computing

VS RECREATIONAL MATHEMATICS

VS SCIENCE / PHILOSOPHICAL

Focus on robustness in deployable SYSTEMS, rather

than elegance in asymptopia

WHERE IS THE ALIFE HERE?

INDEFINITE SCALABILITY IMPLIES ALIFE

OUTLINE
0) Organization: What are we doing here?
1) Best-effort computing: MFM & ulam
2) Space is the place: SPLAT
3) Biology and Beyond

PART 1: MFM & ULAM
MFM: Movable Feast Machine computer architecture:
● Indefinitely-scalable (no internal size limits at all)
● Best-effort (no guaranteed hardware determinism)
Ulam: An object-oriented procedural programming
language for the MFM
● Very limited persistent state (just the CA grid itself)
● Stack and best-effort determinism during one event
● No pointers or general purpose RAM

PART 1: MFM & ULAM
HOW ABOUT AN EXAMPLE

Let’s try to do Hello World

EG10 Hello World

Here’s a java version

EG10 Hello World

Compile the program..

Run the program..

EG10 Hello World

What could be simpler?

But from our point of view, almost EVERYTHING

about that example is wrong or even evil.

Let’s try to write Hello World in ulam, the first of

our two languages for today.

EG10 Hello World

So here’s an ulam take on Hello World

Keywords are different – ‘element’ vs ‘class’ – and

‘Void’ is capitalized for some reason, but hey, we’re
restless deterministic programmers – this is not that
terrifying.

We notice there isn’t any ‘main’.. But it looks like

‘behave’ is playing that role.

EG10 Hello World

The ulam compiler is called ‘ulam’..

EG10 Hello World

But our first problem is it’s way not standard.

EG10 Hello World

But there’s that zip file on the tutorial website ..

EG10 Hello World

with READMEs and scripts to help set things up
on a linux box –

EG10 Hello World

At least on Ubuntu 18.04. But it hasn’t got anything
that weird in it. It’s just packages and code

We can handle this

EG10 Hello World

And it compiles.

So now what?

By default, ulam makes an ‘a.mfz’ file,

EG10 Hello World

and the zip file comes with this weird RunMFZ
script we can try:

EG10 Hello World

Which generates a TON of output.

Where the heck is our ‘Hello World’?

EG10 Hello World

There it is.

Actually there it is over and over..

EG10 Hello World

If we stick ‘-gui’ at the end of the RunMFZ command
it’ll bring up the mfms simulator interface (which is
really the main way mfms is used.)

This whole RunMFZ thing is kind of a hack to try to

make ulam code look more the a ‘normal’ program.

But it’s really not. Ulam code is about writing spatio-

temporally local state transitions, like ‘any’ cellular
automata

EG10 Hello World

And here’s the mfms GUI

It’s… quirky.

The grey rectangles represent TILES,

units of computation that can be
connected together to form bigger
and bigger machines.

EG10 Hello World

Just for comparison, here’s sixteen of
the ‘T2 Tiles’ in real life.

(Officially speaking that red one there

isn’t special – a grid of T2 tiles has no
‘head node’ or ‘master unit’ or
anything like that.

But the red one is the one I’ve been

hacking on, which is useful to know.)

EG10 Hello World

And here’s that same grid running a
simple program, from a recent time-
lapse video segment.

EG10 Hello World

So the four tiles in this simulation are
all empty – except for that white dot

Here we’ve typed ‘t’ to bring up the Tool

palette.

EG10 Hello World

If we click left on the ‘Atom View tool’ (second from
the right in the top row), we can then click left on the
white dot..)

EG10 Hello World

And see that it is indeed an atom of Foo, the ‘element’
that we wrote in our Foo.ulam class.

EG10 Hello World

It’s hard to see, but here we’ve typed the ‘l’ command,
which bring up the logging window – that will show
the same output we saw in the compilation window
when we did RunMFZ without the ‘-gui’ argument.

EG10 Hello World

And if we click the ‘Run’ button, now we see our Hello
World output.

Over and over and over, in the log window.

Let’s fix that.

EG11 HELLO? WORLD

When a behave() method is called, the atom that it is
called upon – called ‘self’ – is located at index 0 of a
class called ‘EventWindow’.

If our behave() method overwrites ew[0], self is

modified or completely changed.

Doctor it hurts when I access self after rewriting ew[0].

EG11 HELLO? WORLD

So note we modify ew[0] at the very end of behave()!

Let’s try it.

EG11 HELLO? WORLD

It builds okay, and runs.

EG11 HELLO? WORLD

And there’s our single instance of ‘Hello World’

EG11 GOODBYE WORLD

Half-buried in log detritus, but there.

EG12 2+2

Let’s try one more stereotypical first program. Let’s
add two and two.

Here’s a java version. We use three int data members

because, you’ll see.

EG12 2+2

And it computes 4, the right answer

EG12 2+2

Compare the java code on top to the ulam code on
the bottom

Similar, but different. Nothing too shocking.

EG12 2+2

Let’s compile Bar and use RunMFZ a ‘Ba’ element

EG12 2+2

Uh oh

What did we do wrong?

EG12 2+2

Exceed allotted bit size 71??

EG12 2+2

Yeah. 71 bits.

Three 32 bit Ints takes 96 bits. An ulam object – an

Atom – isn’t that big.

EG12 2+2

But ulam supports variable sized primitive types like
ints.

Let’s make them 3 bit ints. Three Int(3)’s will only

burn 9 bits.

EG12 2+2

Now what is the compiler mad about??

Well, if you add two Int(3)s, the result could be an

Int(4). But z is declared as an Int(3); it might not fit.

EG12 2+2

So we need to cast the result

Getting careful about primitive sizes and the results of

primitive operations is part of the ulam way of life.
We embrace it.

EG12 2+2

And then it compiles and runs.

And we see (once again over and over), that 2+2 = 3.

Wait what?

The maximum value of an Int(3) is 3. Four doesn’t fit.

But wouldn’t we expect the answer to be like negative

something, then, due to overflow?

Except ulam arithmetic doesn’t overflow, it saturates.
Because that’s almost always less wrong.

EG13 2+2

We could use Int(4), which goes from -8 to +7

EG14 2+2

And if we like we could use Unsigned(3), which
covers 0..7

EG15 2+2 CLEANED UP

We could clean it up with a typedef

Typedefs are good.

And, here, we politely erase ourselves to simulate an
old-fashioned terminating program

EG15 2+2 CLEANED UP

We can also add various kinds of metadata about our
element

Those are backslashes in the structured comment,

even though the italicizing almost stands them
upright.

EG15 2+2 CLEANED UP

Now that we declared Bar’s atomic symbol is ‘B’ – not
‘Ba’ – that’s what goes in the RunMFZ command

EG15 2+2 CLEANED UP

And it all still works.

ULAM TAKE-AWAYS PART I
● Atoms (‘objects’) are instances of Elements (‘classes’)

– An atom has only 71 bits of state
– All atoms are the same size

● State transition code is per-element, not per atom
– Void behave() is the entry point for a state transition
– The behave()-ing atom is stored in the ‘event window’, at ew[0]

● The initial configuration is (generally) determined externally
– Do not try and call the main. That’s impossible. Instead, ...

EG16 SwapLine

This is the primordial SwapLine

I’ll be giving a lightning talk about some

great grandchildren of SwapLine on
Friday.

But for now it’s just about the

EventWindow. What’s ew[5]?

THE EVENT WINDOW

I always go here

THE EVENT WINDOW

To find the event window image

THE EVENT WINDOW

Showing the various indexing schemes that ulam
code can use to examine its environment

THE EVENT WINDOW

ew[0] is always ‘me’.

So ew[5] is like ‘Northwest of me’

Similarly for ew[6]

EG16 SwapLine

This code also uses capital Self, a
predefined type meaning ‘my own
type’ – so ‘if (ew[5] is Self)’ means if
nw is also a SwapLine like I am

Let’s stop using RunMFZ and be

‘official’ by using mfzrun. We can
specify an .mfz output file on the ulam
command if we don’t want to end up
with ‘a.mfz’. So let’s use
SwapLine.mfz, and run that..

EG16 SwapLine

Where’s the SwapLine?

The single atom we were seeing before came from

RunMFZ. Normally the world starts out empty, as
here.

EG16 SwapLine

But we bring up the tool palette with ‘t’

And click left on ‘SL’ to select it

And use the pencil tool to create an SL in the grid.

EG16 SwapLine

And if we click Run on and off..

EG16 SwapLine

We see it heading east.

Why? Because its NW and SW are always empty, so

it does the swap with east.

EG16 SwapLine

Until eventually

EG16 SwapLine

It runs out of universe

Note that ew.swap refuses to swap off the end of the

universe! Sometimes that’s what you want;
sometimes not.

EG16 SwapLine

But suppose we clear the grid and then pencil in a
whole line

EG16 SwapLine

Now the whole line heads east

EG16 SwapLine

But it’s slope is never more than 45 degrees

EG16 SwapLine

Note how it tends to fall behind in the black areas

Why? Because those are ‘intertile zones’, where

performing events requires coordination between
multiple tiles.

EG16 SwapLine

And that slows things down in those areas.

And see what ‘asynchronous cellular automata’ really

means! It’s not just a random permutation, or
uniform random sampling. There can be HIGH-
ORDER spatial biases

EG16 SwapLine

Eventually the SwapLine starts to reach the end of the
universe

EG16 SwapLine

And in this version, stops there.

EG16 SwapLine

But note all those behave() methods are still being
called! There is no actual halt or exit here!

If another tile got connected in this black area here,

for example...

ULAM/MFM DISCUSSION
● Isn’t this fantastically inefficient? The ‘program’ keeps restarting!

– That is a principal source of its robustness.
● How can you write anything serious with only 71 bits of state?

– View an atom less as a program and more as an ALU or ‘mobile FPGA’
– Many atoms will coordinate to perform complex and stateful tasks

● But how can atoms coordinate without a synchronous architecture?
– As demonstrated by the SwapLine, atoms can synchronize as needed.

● It’s just too hard! Where’s my IDE? Where’s my autocomplete?
– Indeed, living on the frontier is not for everybody.

OK, let’s wrap up this section

Some Q&A-ish thoughts.

ULAM PROGRAMMING MOTIFS
behave() methods typically employ a general four step process:
1) Rationalize: POST, internal and external invariants, ...
2) Sense: Input analysis, categorization, IFF, ...
3) Compute: Reasoning, imagine, predict, move selection, ...
4) Act: Output, change the world, place bets, …
Then wait for another behave() invocation, in another event...

Big picture thought

Traditional CPU/RAM computing is all

about complete flexibility about WHAT
INSTRUCTION COMES NEXT.

Ulam has that too, but a lot less – just

for one event. And even within an
event, a single call on behave, there’s
a typical sequence of phases.

PHASES OF AN MFM EVENT

And underneath the hood, down in the
MFM architecture, this is the event
processing loop.

A sequence of steps.

Of course that’s true of all sequential

computer hardware – at some level
it’s got to be a looping sequence of
steps, or else how is it implemented.

MFM and ulam carry that phased-

computation-style up the stack.

OUTLINE
0) Organization: What are we doing here?
1) Best-effort computing: MFM & ulam
2) Space is the place: SPLAT
3) Biology and Beyond

EG17 SwapLine Revisited

Spatial rules

Structure of a rule.

LHS.. check.. RHS..

EG17 SwapLine Revisited

It builds

EG17 SwapLine Revisited

EG17 SwapLine Revisited

EG17 SwapLine Revisited

But this one runs right off the edge of the universe

EG17 SwapLine Revisited

EG17 SwapLine Revisited

ANATOMY OF A SPLAT RULE
● Phases of rule processing

– Given
– Vote
– Check
– Change

● Escape to ulam

Easy to focus on the 2D rules, but...

OUTLINE
0) Organization: What are we doing here?
1) Best-effort computing: MFM & ulam
2) Space is the place: SPLAT
3) Biology and Beyond

Discuss

CONCLUSIONS
THE PAST
● Traditional computer architecture: Good for safe, small tasks

THE PRESENT
● Computer security failures are the symptom
● Hardware determinism is the disease

THE FUTURE
● Living computation on robust-first architecture

THE LIVING COMPUTATION FOUNDATION

...advances a unified view of life and computing.
By supporting science and engineering to explore that

connection, and education and outreach to convey it, we
seek to improve individual liberty and equal opportunity

for the citizens of our emerging information
technological societies.

https://livingcomputation.org/support.html

Brought to you by LCFN220

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94

